Analiza nieliniowa dynamiki autotermicznych struktur fluidyzacyjnych / Katarzyna Bizon. – Kraków, 2017

Spis treści

Nomenclature	7
 Introduction 1.1. Fluidized-bed autothermal structures 1.2. Mathematical modeling of catalytic fluidized-bed reactors 1.3. Aim and scope of the work 	11 11 13 17
 2. Mathematical models of a fluidized-bed catalytic reactor 2.1. Preliminary remarks and main assumptions of the models 2.2. Hydrodynamics of a fluidized bed 2.3. Interphase mass and heat transfer 2.4. Mathematical model of a catalytic fluidized-bed reactor with emulsion pseudohomogeneity 	21 21 23 26 27
2.5. Models of a catalytic fluidized-bed reactor with emulsion heterogeneity2.5.1. Remarks on the models2.5.2. Heterogeneous emulsion model with distributed-parameter	33 33
model of a catalyst pellet 2.5.3. Lumped-parameter models of a catalyst pellet 2.5.4. Criteria for internal and external diffusion	34 39 41
3. Mathematical models of fluidized-bed autothermal	
 structures 3.1. Autothermal structure with partial recirculation of hot products 3.2. Autothermal structure with external heat exchanger 3.2.1. Steady-state model of an autothermal heat exchanger 3.2.2. Dynamic model of an autothermal heat exchanger 3.3. Autothermal structure with circulation of catalyst pellets 	43 44 46 46 48 50
4. Numerical methods for solving models of autothermal	
 structures 4.1. Determination of steady states 4.2. Determination of branching points 4.3. Approximation methods for dynamic simulations 4.3.1. Method of lines 4.3.2. Galerkin method with an empirical orthogonal basis 	57 58 61 63 63 66
5. Comparison of the pseudohomogeneous emulsion model	74
5.1. Comparison of steady-state characteristics	71

5.2. Influence of the type of mathematical model on the results	
of dynamic simulations	79
5.3. Assessment of the approximation method accuracy	84
6. Steady-state and dynamic analysis of fluidized-bed	
autothermal structures with single fluidized bed	91
6.1. Fluidized-bed reactor without external thermal feedback	93
6.2. Configurations with external autothermal feedback	104
6.2.1. Influence of autothermal feedback onto steady-state	
and dynamic characteristics	104
6.2.2. Start-up of autothermal fluidized-bed reactors	113
6.3. Verification of the hypothesis about quasi-steady state operation	
of external autothermal heat exchanger	119
7. Steady-state and dynamic analysis of fluidized-bed	
autothermal structures with circulation of catalyst pellets	121
7.1. Steady-state and dynamic characteristics	122
7.2. Influence of external disturbances on the dynamics of autothermal	
structure	128
8. Case study: oxidation of naphthalene to phthalic anhydride	133
8.1. Reaction kinetics and process conditions	134
8.2. Results and discussion	136
9. Summary and conclusions	145
References	151
Abstract	157
Riassunto	158
Streszczenie	160

oprac. BPK