Nieustalone modele cieplne elementów budynku / Agnieszka Lechowska. – Kraków, 2017

Spis treści

Nomenclature	7
1. Introduction	11
2. Mathematical model of heat exchange in an intermittently	
heated building	18
2.1. Heat exchange through the building envelope	18
2.2. Energy balance of the internal air	21
2.2.1. Hot-water radiator 'on' mode	23
2.2.2. Hot-water radiator 'off mode	26
3. Thermal comfort in a room	30
4. Experimental validation of transient heat exchange model	36
4.1. Description of the room and measured quantities	36
4.2. Calculation and measurement results	42
4.3. Calculated thermal comfort indices	51
5. Example applications of the model of transient heat exchange	55
5.1. Calculation data	55
5.2. Calculation results	57
6. CFD model of the radiator transient heat exchange	65
6.1. Governing equations	65
6.2. Computations by finite volume method in the Ansys	
Fluent program	69
6.3. Radiator geometry and materials	69 70
6.5. Stoody state radiator model	/Z 72
6.5.1. Boundary conditions of stoady-state model and model settings	/ 3 73
6.5.2 Simulation results of steady-state radiator model	73
6.5.3 Conclusions of steady-state radiator model	78
6.6. Use of high performance computers	78
6.7. Transient radiator model in 'off' mode	80
6.7.1. Calculation results of transient radiator model	80
7. Thermal transmittance of external window	85
7.1. Window CFD model	85

7.2. Calorimetric chamber measurements of window thermal	
transmittance	91
7.2.1. Calibration panel measurements	93
7.2.2. Window thermal transmittance measurements	98
7.3. Comparison of measured and simulated window thermal	
transmittances	101
7.4. Influence of different internal and external temperatures	
on window thermal transmittance	101
8. CFD model of heat exchange in a room heated by a hot	
water radiator	104
9. Coupling model of heat exchange in room with CFD	
room model	109
10. Summary and conclusions	113
References	116
Abstract	122
Zusammenfassung	122
Streszczenie	124

oprac. BPK