Soil mechanics : calculations principles and methods / Victor N. Kaliakin. – Oxford, 2017

Spis treści

Preface	xi
Acknowledgments	xiii
1. Example Problems Involving Phase Relations for Soils	1
1.0 General Comments	1
1.1 General Definitions	1
1.2 Mass Densities	3
1.3 Unit Weights	4
1.4 Definition of Fundamental Quantities	4
1.5 Relations Derived From Fundamental Quantities	5
1.5.1 Case 1.1: Relation Between Void Ratio and Porosity	5
1.5.2 Case 1.2: Relation Between Porosity and Void Ratio	5
1.5.3 Case 1.3: Relation Between Moisture Content, Specific Gravity	
of Solids, Void Ratio, and Degree of Saturation	6
1.5.4 Case 1.4: Relation Between Dry Unit Weight, Specific Gravity	
of Solids, and Void Ratio	6
1.5.5 Case 1.5: Relation Between Moist Unit Weight, Specific Gravity	
of Solids, Moisture Content, and Void Ratio	7
1.5.6 Case 1.6: Relation Between Moist Unit Weight, Dry Unit Weight,	
and Moisture Content	7
1.5.7 Case 1.7: Relation Between Moist Unit Weight, Specific Gravity	
of Solids, Degree of Saturation, and Void Ratio	7
1.5.8 Case 1.8: Unit Weight of Submerged Soil and Its Relation to Moist	
Unit Weight	7
Example Problems	8
2. Example Problems Related to Soil Identification	
and Classification	51
2.0 General Comments	51
2.1 Particle Sizes	51
2.2 Distribution of Grain Sizes	54
2.2.1 Sieve Analysis	54
2.2.2 Quantities Computed From Gradation Curves	55
2.2.3 Importance of Soil Gradation	56
2.2.4 Hydrometer Analysis	56
2.3 Plasticity of Soil	59
2.4 Atterberg Limits	61
2.4.1 Basic Definitions	61

2.4.2 Derived Limits	63
2.5 Soil Classification	65
Example Problems	67
3. Example Problems Related to Compaction of Soils	93
3.0 General Comments	93
3.1 Fundamental Definitions	93
Example Problems	97
4. Stresses, Strains, and Elastic Response of Soils	131
4.0 Introductory Comments	131
4.1 General Definitions	131
4.1.1 The Continuum Concept	131
4.1.2 Homogeneity	132
4.1.3 Isotropy	132
4.2 Concept of Stress	132
4.2.1 Definition of Stress at a Point	132
4.2.2 Definition of the State of Stress at a Point	134
4.2.3 Mean Stress	134
4.2.4 State of Plane Stress	135
4.2.5 Stress Transformations	135
4.3 Deformation and Strain	150
4.3.1 Normal and Shear Strains	152
4.3.2 Infinitesimal Strains	152
4.3.3 Definition of State of Strain at a Point	153
4.3.4 Volumetric Strain	154
4.3.5 State of Plane Strain	154
4.3.6 Strain Transformations	154
4.4 Constitutive Relations	155
4.4.1 General Form of Constitutive Relations	156
4.4.2 Insight Into the Constitutive Matrices	156
4.4.3 General Classes of Material Idealizations	157
4.4.4 Elastic Material Idealizations	157
4.5 Stresses in Soil Due to Surface Loads	160
4.6 Superposition Principle	160
Example Problems	160
5. Example Problems Involving In Situ Stresses Under	
Hydrostatic Conditions	205
5.0 General Comments	205
5.1 Surface Tension	205
5.1.1 Surface Tension Phenomena	206
5.2 Capillary Phenomena in Tubes	206
5.3 Capillary Phenomena in Soils	209
5.4 In Situ Stresses in Soils Under Hydrostatic Conditions	211
5.4.1 Total Stress	211

5.4.2 Pore Fluid Pressure	212
5.4.3 Effective (Intergranular) Stress	212
5.5 Relationship Between Horizontal and Vertical Stresses	213
Example Problems	214
6. Example Problems Involving One-Dimensional Fluid Flow	
in Soils	243
6.0 General Comments	243
6.1 Conservation of Mass	244
6.2 Bernoulli's Energy Equation	245
6.3 Head Loss	247
6.4 Hydraulic Gradient	247
6.5 Seepage Velocity	247
6.6 Darcy's Law	250
6.7 Experimental Determination of Permeability	252
6.7.1 Constant-Head Permeability Test	253
6.7.2 Falling-Head Permeability Test	254
6.8 Hydrostatic Conditions Compared to Upward and Downward	
Seepage	255
6.8.1 No Seepage (Hydrostatic Conditions)	255
6.8.2 Downward Seepage	257
6.8.3 Upward Seepage	258
6.9 Seepage Forces	260
6.10 Critical Hydraulic Gradient for Upward Seepage	261
6.11 One-Dimensional Seepage Through Anisotropic Soil Strata	262
6.11.1 Equivalent Horizontal Permeability	262
6.11.2 Equivalent Vertical Permeability	263
Example Problems	265
7. Example Problems Involving Two-Dimensional Fluid Flow	
in Soils	315
7.0 General Comments	315
7.1 Basic Assumptions	316
7.2 Governing Equation	317
7.3 Boundary Conditions	317
7.4 Solution of the Governing Equation	317
7.5 Flow Nets	318
7.6 Rate of Flow Through Flow Nets	319
Example Problems	321
8. Example Problems Related to Compressibility and Settlement	
of Soils	331
8.0 General Comments	331
8.1 Deformation	331
8.2 Compressibility of Soils	332
8.3 Settlement	332

8.3.1. Immediate Settlement	333
8.3.2. Primary Consolidation Settlement	333
8.3.3. Secondary Consolidation Settlement	334
8.4 Quantifying Soil Compressibility	334
8.5 Preconsolidation Pressure	339
8.6 Coefficient of Compressibility	340
8.7 Ultimate Primary Consolidation Settlement	341
8.8 Coefficient of Volume Compressibility, Modified Compression,	
and Swell Indices	342
Example Problems	344
9. Example Problems Related to Time Rate of Consolidation	377
9.0 General Comments	377
9.1 Fundamental Definitions	377
9.2 Terzaghi's One-Dimensional Consolidation Theory	377
9.2.1 Governing Differential Equation	379
9.2.2 Separation of Variables Solution	381
9.2.3 Local Degree of Consolidation	381
9.2.4 Average Degree of Consolidation	382
Example Problems	384
10. Example Problems Related to Shear Strength of Soils	419
10.0 General Comments	419
10.1 Shear Strength of Soils	419
10.2 Factors Controlling Shear Strength of Soils	419
10.3 Volume Change Characteristics	420
10.4 Importance of Shear Strength of Geomaterials	420
10.5 Mohr's Failure Criterion	420
10.6 Mohr—Coulomb Failure Criterion	422
10.6.1 Obliquity Relations	424
Example Problems	428
Index	441

oprac. BPK